Невероятные проекты по спасению падающих пассажирских самолетов

Неужели ничего нельзя придумать, чтобы пассажиры выживали в авиакатастрофах? Оказывается, можно! Самые лучшие разработки — в этой статье.

Самолет

Многие в детстве читали замечательную книгу Андрея Сергеевича Некрасова «Приключения капитана Врунгеля», изданную аж еще в 1937 году. А кто не читал, тот уж наверняка смотрел мультфильм. Среди эпизодов, не вошедших в экранизацию, была и история аварийного спасения из самолета: «Если какая авария — взрыв, пожар или крыло отвалится, — летчик одним движением отделяет кабину, и она самостоятельно опускается на парашюте».

И хотя капитан любил приврать, но здесь описана действительно проходившая испытания в США в начале 1930-х годов система спасения пассажиров самолетов.

По сигналу тревоги пассажиры продевали руки в плечевые обхваты и застегивали крепления, после чего пилот открывал под ногами путешественников люки, через которые кресла выпадали из самолета и спускались на индивидуальных парашютах, в свернутом состоянии хранившихся в их спинках.

Практического применения система не получила: вероятность спасения с ее помощью оценивалась лишь в 15-20%, поскольку благополучно выпасть из самолета можно было только при горизонтальном полете на достаточной высоте. Уже тогда посчитали, что лучший способ спасти пассажиров — это повышать надежность самолетов. Такая точка зрения остается главенствующей и сегодня, когда гораздо больше шансов погибнуть по дороге в аэропорт или от упавшего с крыши кирпича.

Тем не менее после каждой авиакатастрофы неизменно появляются новые и новые проекты спасения, не идущие в разработку, но помогающие аэрофобам скоротать паническую атаку.

Дадим всем пассажирам парашюты

Парашют коллективного  спасения Г. Е. Котельникова
Парашют коллективного спасения Г. Е. Котельникова. Рисунок изобретателя, 1923 год
 

Идея раздать всем пассажирам парашюты сегодня не рассматривается в принципе: на высоте 10 километров (гарантирована взрывная декомпрессия при отсутствии кислорода и морозе за 40 градусов) и при скорости полета порядка 800 км/ч невозможно ни открыть дверь салона, ни выпрыгнуть из него. Невозможно, даже если бы все пассажиры имели специальную подготовку и каким-то волшебным образом удалось за считаные секунды доставить всех к дверям без паники и давки по крутящемуся волчком проходу.

На меньших высотах парашют тоже не спасет, только еще сократится время на эвакуацию при немногим лучших условиях «десантирования». Поэтому все современные системы предполагают спасать пассажиров вместе с герметичной частью салона и без их непосредственного участия.

Парашют Г. Е. Котельникова

Такую идею в 1927 году запатентовал русский изобретатель Глеб Котельников, создатель первого в мире ранцевого парашюта. «Способ коллективного спасания на самолете» основан на отделении всей пассажирской кабины и ее спуске на грузовом парашюте конструкции Котельникова, разработанном им в 1923 году: «В остов самолета вставляется кабина, в ней находятся пассажиры самолета.

Когда надо спасаться, летчик поворотом рычага приводит в действие механизм, который подымает верхнюю часть фюзеляжа самолета, освобождая сложенный под ней парашют. На нем кабина и опускается к земле».

Пилот же покидал бы самолет на собственном парашюте. В отличие от пассажиров, он умел бы им пользоваться.

Глеб Котельников со своим ранцевым парашютом, 1911 год
Глеб Котельников со своим ранцевым парашютом, 1911 год
 

Патент Котельникова на практике так и не был реализован. Быстрое развитие авиации в 1930-е годы сделало аварийную посадку машины пилотом даже при отказе двигателя значительно более безопасной для пассажиров.

Военные разработки

Проект «Авиаспас» № 061
Проект «Авиаспас» № 061
 

В воздушно-десантных войсках СССР с середины 1970-х годов используются парашютно-реактивные системы типа ПРСМ-915 и 925 «Реактавр». Сброшенная с Ил-76 или Ан-12 боевая машина десанта (БМД) опускается на купольной системе, а в мо­мент касания специальным щупом земли запускаются тормозные реактивные двигатели, которые гасят скорость спуска и обеспечивают сравнительно мягкое приземление.

Проект «Авиаспас» № 061, предложенный в 2006 году российскими изобретателями, предполагает использовать ПРСМ для эвакуации пассажиров — с этой целью помещать внутрь фюзеляжа самолета отсеки на 56 кресел, каждый из которых был бы оборудован парашютно-реактивной системой. При аварии они бы вытягивались парашютами через кормовую аппарель и опускались так же, как боевая машина десанта.

Креслo «Казбек-Д»
Креслo «Казбек-Д»
 

Однако самые распространенные сегодня лайнеры «Аэробус» и «Боинг» в хвостовой части не имеют загрузочного люка и аппарели, а создание нового типа самолета под такую систему едва ли оправданно. Значит, она годится только для «грузовиков» типа Ан-12, Ан-72, Ан-26 или для Ил-76. Но перевозки пассажиров этими типами воздушных судов вряд ли можно назвать массовыми.

Кроме того, ПРСМ обеспечивает десантирование при скорости полета до 400 км/ч, а за выживаемость экипажа боевых машин при скорости в момент удара о землю до 8 м/с отвечают специальные амортизационные кресла «Казбек-Д», несколько напоминающие ложементы космонавтов. Оборудовать чем-то подобным пассажирские самолеты едва ли возможно, а следовательно, использовать военные системы в чистом виде не получится.

Система «Реактавр» десантирует БМД, 1976 год
Система «Реактавр» десантирует БМД, 1976 год
 

Патент Г.В. Бобылева устраняет один из недостатков «Авиа­спаса»: в этом проекте предполагается отстреливать хвостовую секцию самолета, так что наличие грузовой рампы необязательно. Однако возможность вытягивания спасательных модулей из кувыркающегося без хвоста на скорости крейсерского полета фюзеляжа и состояние после таких эволюций пассажиров в них остаются под большим вопросом.

Самой обсуждаемой сегодня можно назвать идею инженера Киевского авиационного завода В.Н. Татаренко, запатентованную в 2010 году. Причина такого внимания не в существенном отличии от описанных выше приспособлений, а лишь в популярном среди пользователей Интернета демонстрационном ролике, создатели которого мультимедийными средствами показали, как замечательно работала бы система Татаренко на фоне летних пейзажей, если бы она была реализована «в металле». По сути же это еще один вариант использования парашютно-реактивной системы.

Проект В. Н. Татаренко
Проект В.Н. Татаренко
 

Татаренко предполагает спроектировать принципиально новый тип самолета, где кабина пилотов с крыльями, двигателями и оперением будет представлять собой основу, то есть собственно самолет, а пассажирская кабина со встроенной системой спасения крепилась бы к ней как конформ­ный подвесной контейнер. В случае опасности он мгновенно бы отсоединялся, спускался на парашютных куполах и тормозился у земли реактивной тягой.

Поскольку на создание новых типов самолетов нужны время и деньги, желающих реализовать не имеющий экспериментального подтверждения проект пока не нашлось. В качестве паллиатива киевский изобретатель предлагает пока использовать все те же вытяжные контейнеры, возможные только на грузопассажирских самолетах серии Ан и на Ил-76.

Проект В. Н. Татаренко
Проект В. Н. Татаренко
Проект В. Н. Татаренко

Подобного типа систем запатентовано во всем мире немало, но до сего дня не реализована ни одна из них, поскольку при кажущейся простоте исполнения и заманчивых дополнительных шансах на спасение пассажиров все они имеют ряд крайне серьезных недостатков.

«Матрешка» со второй спасательной кабиной внутри основного фюзеляжа неизбежно утяжеляет самолет и уменьшает количество пассажирских мест в нем. Значит, авиакомпании будут меньше зарабатывать на каждом рейсе, а тратить на топливо и обслуживание придется больше. Для облегчения систем можно использовать углепластик и другие перспективные материалы, но общее соотношение затрат и прибыли это мало изменит.

Парашютно-реактивная система ПРСМ-915
Парашютно-реактивная система ПРСМ-915
 

В качестве контр­аргумента предлагается спросить пассажиров, готовы ли они в обмен на удвоение цены билетов получить такие далеко не стопроцентные гарантии. В военной авиации прецедент был: состоящий из двух человек экипаж американского бомбардировщика F-111 спасается вместе с отстреливаемой кабиной.

Однако вероятность выживания пилотов остается на уровне 50–65%, что для перспективного дорогостоящего проекта явно недостаточно. Кроме того, от терактов или ошибок экипажей, оказавшихся причиной большинства авиакатастроф в последние годы, никакая система не спасет в принципе.

Можно внедрить автоматику, можно ужесточить предпосадочный досмотр пассажиров и другие меры безопасности в аэропортах — все это столь же эффективно снизит риски для уже имеющегося парка самолетов без дополнительных расходов на спускаемые капсулы.

Самолет под куполом

Американская компания Ballistic Recovery Systems и российская фирма «MВEН» разработали и с середины 1980-х годов успешно продают системы спасения для малых самолетов типа «Сессна» и им подобных. В случае необходимости в поток набегающего воздуха выбрасывается купол парашюта, на котором и опускается самолет целиком, вместе с пилотом и пассажирами.

Самолет под куполом

Уже зафиксировано более трех сотен случаев спасения людей с помощью этих систем. Было бы отлично, если бы терпящий бедствие авиалайнер можно было вот так же опустить на землю, но… Ох уж это «но». Прочность существующих сегодня тканей не позволяет создать парашют, который выдержит такую нагрузку. Какая-нибудь «Сессна-172» весит чуть более тонны, а сравнительно небольшой магистральный лайнер Airbus A320 — семьдесят с лишним тонн.

Для него понадобится шесть парашютных куполов площадью с футбольное поле каждый, и все они должны выдержать скоростной напор воздуха на 800 км/ч. Впрочем, когда-нибудь, возможно, такие материалы и появятся, и вот тогда этот способ спасения может оказаться наиболее перспективным. Во всяком случае для малых самолетов он работает уже сейчас.

Самолет и парашют

Взорвать для спасения

Поскольку самолет целиком слишком тяжел для спуска на землю под парашютом, можно попытаться спасти только его часть с пассажирами. По этому принципу должна действовать система Гамида Халидова, названная им в 2000 году как «авиационная пассажирская автономная капсула спасения (АПАКС)».

Одна или несколько таких капсул составляют весь пассажирский салон, а остальные части самолета при аварии отделяются от него подрывом удлиненных зарядов взрывчатого вещества, мгновенно отсекающих крылья, хвост и кабину пилотов, а при необходимости и отделяющих друг от друга соседние капсулы.

Благодаря этому опускать на парашютах придется капсулы сравнительно небольшой массы, для этого пригодны существующие уже сегодня парашютные ткани. Каждая капсула совершенно автономна и позволяет спасти пассажиров даже при взлете и посадке на малых высотах, хотя после разрушения самолета им придется изрядно покувыркаться внутри, испытывая значительные перегрузки.

Система Гамида Халидова

Система Гамида Халидова едва ли будет реализована даже в перспективе: ее использование предполагает встраивание капсул на этапе проектирования нового самолета. Для уже построенных лайнеров АПАКС не подходит, а проектировать вместе с изобретателем другие ни один из двух концернов-монополистов — Airbus и Boeing — не планирует вроде бы.

Кроме того, наличие на борту заметного запаса взрывчатых веществ, обеспечивающих аварийное разделение самолета, представляет опасность само по себе, ведь система детонации может сработать по многим нештатным причинам — скажем, при далеко не редком случае попадания молнии в самолет. Так что неизвестно, на что АПАКС в конечном итоге увеличит шансы: на выживание в аварии или на саму аварию.

Система Гамида Халидова

Всех утопить! В пене

Самую экзотическую на сегодняшний день систему спасения придумал молдавский архитектор Александр Балан совместно с группой ученых Политехнического университета в Хельсинки. К слову, предложение Балана — еще один пример широкой известности инженерной разработки, достигнутой посредством СМИ и Интернета. Красивый мультик народу всегда люб.

Александр Балан хочет спасать самолет целиком, но решил не идти по пути проектирования парашютных систем, а дать лайнеру падать обычным образом, обеспечив спасение людей за счет уничтожения двух главных угроз такого падения — повреждения человека при ударе о землю и возгорания авиационного топлива.

Титановые капсулы
Титановые капсулы будут содержать особую жидкость, которая в случае аварии превратится в пену, а затем в твердое вещество. А после крушения — опять в жидкость. Объем пены, увеличиваясь в 416 раз, будет обволакивать пассажира словно кокон, защищая от удара
 

Все тот же А-320 может иметь в крыльевых топливных баках до 30 тонн авиационного керосина, возгорание которого при разрушении конструкции гарантированно уничтожит все живое в радиусе десятков метров, а уж уцелевших в самолете людей — в первую очередь.

Для борьбы с огнем Балан придумал вещество SIAAB1 2013. Формула его засекречена, так что, как оно работает с точки зрения химии, мы не знаем. Но, по словам изобретателя, дело выглядит так: при падении лайнера по специальным патрубкам жидкое вещество SIAAB1 подается в топливные баки, а там оно как-то связывает керосин, изменяя его химическую и физическую структуру и превращая в подобие зеленоватого песка, уже неспособного гореть.

Якобы один литр SIAAB1 связывает сто литров керосина, так что процесс преобразования происходит почти мгновенно и к моменту удара о землю гореть в самолете уже нечему.

Вещество SIAAB1  2013
Вещество SIAAB1 2013
 

Ну а людей во время удара спасет еще одно волшебное и тоже секретное вещество — SIAAB2 2013. Оно хранится в специальных титановых капсулах, а за 8 секунд до удара о землю (секунды рассчитывает автоматика по сигналам от высотомера) впрыскивается в салон. На воздухе SIAAB2 увеличивается в объеме в 416 раз и затвердевает, полностью заполняя весь салон и создавая защитный кокон из чего-то вроде губчатой резины вокруг каждого пассажира.

В теории это позволит избежать внешних травм при ударе о землю с перегрузками до 100 g. Через 30 секунд вещество снова возвращается в жидкое состояние, так что пассажиры не успеют задохнуться, отделавшись лишь мокрой одеждой и не слишком приятным едким запахом. Отмечается, что вещество SIAAB2 для глаз и кожи безопасно.

Вещество SIAAB1 2013

Предполагаются испытания отдельных компонентов системы Балана при поддержке Международной организации гражданской авиации (ИКАО), но пока сомнений очень много. Например, огромная перегрузка при ударе о землю. Допустим, кокон спасет от повреждений человека снаружи, но ведь возможны повреждения при смещении внутренних органов тела относительно друг друга.

Далее. SIAAB2 попадает в дыхательные пути и там увеличивается в четыреста раз. Что будет? Разрыв дыхательных путей и смерть.

Также изобретатель предполагает, что пилоты смогут до самой земли контролировать самолет, обеспечивая его пусть и аварийное, но управляемое снижение и посадку.

К сожалению, гораздо чаще падение с большой высоты происходит в результате фатальных повреждений конструкции или ошибок пилотирования, после которых лайнеры валятся вниз беспорядочно и разрушаются от нерасчетных перегрузок на фрагменты еще в воздухе. В этой ситуации система Билана не сможет никого спасти. В общем, пока вопросов больше, чем ответов на них.

SIAAB1

Отношение к любым экзотическим системам спасения пассажиров сегодня весьма сдержанное, без излишнего оптимизма. Вложение средств и сил в создание автоматизированных систем управления, исключающих пресловутый человеческий фактор возникновения предпосылок к летному происшествию, а также создание новых авиационных материалов и технологий сделали для безопасности полетов гораздо больше, чем любые системы спасения.

Конечно, для каждого человека его персональная жизнь важнее всего, и за возможность спастись он будет ратовать со всей убедительностью. Отсюда и массовый интерес к проектам систем спасения.

Но, как скучно это ни звучит, законы статистики подсказывают, что в обозримом будущем конструкторы пассажирских лайнеров предпочтут идти по проверенному пути повышения их надежности, а не дорогой экспериментов с различными экзотическими новшествами.

Невероятные спасения

Обычно при падении авиалайнера с высоты крейсерского эшелона в несколько километров погибают все пассажиры. Но история знает случаи чудесных спасений.

Лариса Савицкая и Весна Вулович
Лариса Савицкая и Весна Вулович
 

Например, в августе 1981 года 20-летняя Лариса Савицкая уцелела после падения с высоты 5000 метров вместе с частью фюзеляжа разрушившегося в воздухе пассажирского Ан-24, следовавшего рейсом Комсомольск-на-Амуре — Благовещенск.

26 января 1972 года югославский Douglas DC-9, следовавший рейсом из Копенгагена в Загреб, взорвался рядом с деревней Сербска-Каменице в Чехословакии на высоте 10 160 метров. Причиной трагедии стала бомба, заложенная на борту лайнера хорватскими террористами. Стюардесса Весна Вулович упала на заснеженные деревья вместе с обломками средней части самолета, получила серьезные травмы, но выжила.

Были и другие случаи. С 1936 по 2015 год таких счастливцев, выживших в катастрофах воздушных судов различных типов, во всем мире наберется около 80 человек.

Парашютики не забываем!

Лейтенант Гаррис и летчик-испытател Михаил Громов
Лейтенант Гаррис и летчик-испытатель Михаил Громов
 

На заре авиации пилоты не любили брать с собой парашюты, считая их бесполезным грузом.

Эта же ситуация сохранялась и в годы Первой мировой войны. 22 октября 1922 года в США лейтенант Гаррис стал первым в мире летчиком, который спасся из развалившегося во время испытаний самолета при помощи парашюта. После этого отношение пилотов к парашюту изменилось, и с 1924 года он стал обязательной частью экипировки американских военных пилотов.

В 1930-е годы в США даже был создан специальный клуб, членами которого могли быть только лица, совершившие вынужденный прыжок с парашютом для спасения своей жизни. Клуб избрал своим названием слово «Катерпиллер» — в честь гусеницы шелкопряда, из нитей которого делали прочные и легкие купола парашютов.

В нашей стране первым пилотом, спасенным парашютом, стал известный летчик-испытатель Михаил Громов, в июне 1927 года выпрыгнувший из штопорившего самолета.

 

источник

  • avatar
  • .
  • +11

Больше в разделе

0 комментариев

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.