Магаданские дети уверены, что «мама» и «электроэнергия» – слова-синонимы
В «Магаданэнерго» подвели итоги акции по предотвращению детского электротравматизма. Энергетики с сентября 2014 года проводили в колымских школах уроки электробезопасности. В игровой форме, с загадками, кроссвордами и шутками сотрудники компании рассказывали ученикам младших классов, где именно таится опасность электричества и как избежать беды. Такие нужные уроки прошли в 13 школах города и районов, на них об обращении с электроприборами и о правилах поведения рядом с энергообъектами узнали почти 2000 детей. Надо сказать, что маленькие колымчане знают, что такое электричество и в чем его опасность – на большинство вопросов сотрудников «Магаданэнерго» школьники отвечали легко и без запинки. Иногда даже рассказывали о плохой стороне электроэнергии, приводя примеры из жизни. Были и такие ребята, которые очаровывали своей непосредственностью и нестандартными мыслями. На загадку «Бывает она доброй и злой, это мы точно знаем с тобой. Она нас согревает теплом, она освещает ярко наш дом», одна малышка трогательно ответила: «Мама». И ведь не поспоришь: у мамы энергия еще какая!
Восторг у ребятни вызывали мультяшные персонажи из слайдов — чрезмерно любопытный мальчишка Лэпчик и положительная девочки Электрошка, ну и, конечно, подарки: журнал-раскраска с комиксами, загадками и мини-квестом, а также яркие закладки.
Очередная серия полезных уроков пройдет уже в следующем году, примерно в апреле-мае. Занятия подготовят школьников в предстоящие длинные каникулы к правильному обращению с электричеством — ведь именно в это время дети много времени проводят на улице.
53 комментария
Папа — электросчётчик.
И вообще, чего докопались — это ж даже хорошо, когда у человека есть свой, оригинальный, неподражаемый и узнаваемый искристый почерк… :)
Ни разу не увидел — где там замешан бизнес с детьми, и где — посягательство на «святое»?
Пиздец. )))))))) Можно еще кучу всякого подставить )))))))
Переходи лучше на коньяк — последствий меньше… )
PS: луч
щшеЛибо физик дурак — либо недоговариваешь чего-то.
Электри?чество. Термин введён английским естествоиспытателем Уильямом Гилбертом
Содержание
1 История
2 Теория
3 Электричество в природе
4 Образ электричества в культуре
5 Производство и практическое использование
5.1 Генерирование и передача
5.2 Применение
6 Хронология основных открытий и изобретений
7 Примечания
8 Литература
9 Ссылки
История
Одним из первых электричество привлекло внимание греческого философа Фалеса в VII веке до н. э., который обнаружил, что потёртый о шерсть янтарь (др.-греч. ????????: электрон) приобретает свойства притягивать легкие предметы[2]. Однако долгое время знание об электричестве не шло дальше этого представления. В 1600 году появился сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания[3]. В 1729 году англичанин Стивен Грей провел опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество[4]. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шелк и смолы о шерсть[5]. В 1745 г. голландец Питер ван Мушенбрук создает первый электрический конденсатор — Лейденская банка.
Первую теорию электричества создает американец Б. Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения над электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний[6]. Изучение электричества переходит в категорию точной науки после открытия в 1785 году Закона Кулона.
Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделенных смоченной в подсоленной воде бумагой[1]. В 1802 году Василий Петров обнаружил вольтову дугу.
Майкл Фарадей — основоположник учения об электромагнитном поле
В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).
Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создает на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привел Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.
В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).
В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.
В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединенную теорию электрослабых взаимодействий.
Теория
Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся, прежде всего, в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[7]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплен вполне определенный знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют, таким образом, место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный.
Наиболее общая фундаментальная наука, изучающая электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность (и т. п.) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц (и т. п.) изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.
Электричество в природе
Молния ночью в Денвере.
Ярким проявлением электричества в природе служат молнии, электрическая природа которых была установлена в XVIII веке. Молнии издавна вызывали лесные пожары. По одной из версий, именно молнии привели к первоначальному синтезу аминокислот и появлению жизни на земле (Эксперимент Миллера — Юри и Теория Опарина — Холдейна). Атмосфера Земли представляет собой гигантский конденсатор, нижняя обкладка которого (земная поверхность) заряжена отрицательно, а верхняя обкладка (верхние слои атмосферы до высоты 50 км) положительно. Разность потенциалов между поверхностью Земли и верхними слоями атмосферы составляет 400 кВ, вблизи поверхности Земли существует постоянное электрическое поле напряженностью 100 В/м. Отрицательный заряд земной поверхности поддерживается молниями[8].
Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 — 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передается без уменьшения амплитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия[9].
Многие рыбы используют электричество для защиты и поиска добычи под водой. Разряды напряжения южноамериканского электрического угря могут достигать величины напряжения в 500 вольт. Мощность разрядов электрического ската может достигать 0,5 кВт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создает напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде[10].
Образ электричества в культуре
В мифологии существуют боги, способные метать разряды молнии: у греков Зевс, Юпитер, Волгенче из марийского пантеона, Агни — бог индусов, одна из форм которого — молния, Перун — бог-громовержец в древнерусском пантеоне, Тор — бог грома и бури в германо-скандинавской мифологии.
Одной из первых попыталась осмыслить образ электричества Мэри Шелли в драме «Франкенштейн, или Современный Прометей», где оно предстает силой, с помощью которой можно оживлять трупы. В диснеевском мультфильме Чёрный Плащ существует повелевающий электричеством антигерой Мегавольт, а в японской анимации и играх — электрические покемоны (самый известный из которых Пикачу).
Производство и практическое использование
Генерирование и передача
Ранние эксперименты эпохи античности, такие, как опыты Фалеса с янтарными палочками, были фактически первыми попытками изучения вопросов, связанных с производством электрической энергии. Этот метод в настоящее время известен как трибоэлектрический эффект, и хотя с его помощью можно притягивать легкие предметы и порождать искры, в сущности он чрезвычайно малоэффективен[11]. Функциональный источник электричества появился только в XVIII веке, когда было изобретено первое устройство для его получения — вольтов столб. Он и его современный вариант, электрическая батарея, являются химическими источниками электрического тока: в основе их работы лежит взаимодействие веществ в электролите. Батарея дает возможность получить электричество в случае необходимости, является многофункциональным и широко распространенным источником питания, который хорошо подходит для применения в различных условиях и ситуациях, однако ее запас энергии конечен, и после истощения последнего батарея нуждается в замене или перезарядке. Для удовлетворения более существенных потребностей в большем ее объеме электрическая энергия должна непрерывно генерироваться и передаваться по линиям электропередач.
Обычно для ее порождения применяются электромеханические генераторы, приводимые в действие либо за счет сжигания ископаемого топлива, либо с использованием энергии от ядерных реакций, либо посредством силы воздушных или водных течений. Современная паровая турбина, изобретенная Ч. Парсонсом в 1884 году, в настоящее время генерирует примерно 80 % всего электричества в мире, используя те или иные источники нагрева. Эти устройства более не напоминают униполярный дисковый генератор Фарадея, созданный им в 1831 году, однако в их основе по-прежнему лежит открытый им принцип электромагнитной индукции — возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него[12]. Ближе к концу XIX века был изобретен трансформатор, что позволило более эффективно передавать электроэнергию при более высоком напряжении и меньшей силе тока. В свою очередь, эффективность передачи энергии обусловливала возможность генерировать электричество на централизованных электростанциях с выгодой для последних и затем перенаправлять его на довольно протяженные дистанции к конечным потребителям[13][14].
Получение электричества из кинетической энергии ветра набирает популярность во многих странах мира
Поскольку электроэнергию затруднительно хранить в таких количествах, которые были бы достаточны в масштабах государства, необходимо соблюдать баланс: генерировать ровно столько электричества, сколько потребляется пользователями. Для этого энергетическим компаниям необходимо тщательно прогнозировать нагрузку и постоянно координировать производственный процесс со своими электростанциями. Некоторое количество мощностей при этом держится в резерве, чтобы в случае возникновения тех или иных проблем или потерь энергии подстраховывать электросети.
По мере того, как идет модернизация и развивается экономика того или иного государства, спрос на электричество быстро возрастает. В частности, для Соединенных Штатов этот показатель составил 12 % роста в год на протяжении первой трети XX века[15], а в настоящее время аналогичный прогресс наблюдается у таких интенсивно развивающихся экономик, как Китай и Индия[16][17]. Исторически рост потребности в электричестве опережает аналогичные показатели для других видов энергоносителей[18]. Следует также заметить, что беспокойство по поводу влияния производств электроэнергии на окружающую среду привело к сосредоточению внимания на генерировании электричества посредством возобновляемых источников — в особенности за счет энергии ветра и воды[19].
Применение
Основная статья: Электротехника
Электрическая лампа
Использование электричества обеспечивает довольно удобный способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений[20]. Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах. Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократило количество возгораний в быту и на производстве[21].
В целом, начиная с XIX века, электричество плотно входит в жизнь современной цивилизации. Электричество используют не только для освещения[22], но и для передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте[23] (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).
В целях получения электричества созданы оснащенные электрогенераторами электростанции, а для его хранения — аккумуляторы и электрические батареи.
Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка), умерщвления преступников (электрический стул) и создания музыки (электрогитара).
Закон Джоуля-Ленца о тепловом действии электрического тока обусловливает возможности для электрического отопления помещений. Хотя такой способ довольно универсален и обеспечивает определенную степень управляемости, его можно рассматривать как излишне ресурсозатратный — в силу того, что генерирование используемого в нем электричества уже потребовало производства тепла на электростанции[24]. В некоторых странах, например — в Дании, были даже приняты законодательные нормы, ограничивающие или полностью запрещающие использование электрических средств отопления в новых домах[25]. В то же время электричество — это практичный источник энергии для охлаждения, и одной из активно растущих областей спроса на электричество является кондиционирование воздуха[26][27].
:)
И действительно — есть же лото, почему лотерея?
спасибо! ты, как всегда, на страже!
Подумай в следующий раз, прежде чем сказать. И не искушай судьбу, ведь у тебя, наверное, будут дети.
PS. Дауны добрые, жизнерадостные люди. Недаром их называют солнечными. Зайди в инет, почитай: среди людей с синдромом Дауна есть актеры, музыканты, спортсмены-чемпионы…